Alternating diagrams of 4-regular graphs in 3-space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some 3 - regular 4 - ordered graphs ∗

A graph G is k-ordered if for any sequence of k distinct vertices v1, v2, . . . , vk of G there exists a cycle in G containing these k vertices in the specified order. In 1997, Ng and Schultz posed the question of the existence of 3-regular 4-ordered graphs other than K4 and K3,3. In 2008, Meszaros solve the question by proving the Petersen graph and the Heawood graph are 3-regular 4-ordered gr...

متن کامل

On 3-regular 4-ordered graphs

A simple graph G is k-ordered (respectively, k-ordered hamiltonian), if for any sequence of k distinct vertices v1, . . . , vk of G there exists a cycle (respectively, hamiltonian cycle) in G containing these k vertices in the specified order. In 1997 Ng and Schultz introduced these concepts of cycle orderability and posed the question of the existence of 3-regular 4-ordered (hamiltonian) graph...

متن کامل

On 4-ordered 3-regular graphs

A graph G is k-ordered if for any sequence of k distinct vertices v1, v2, . . . , vk of G there exists a cycle in G containing these k vertices in the specified order. In 1997, Ng and Schultz posed the question of the existence of 4-ordered 3-regular graphs other than the complete graph K4 and the complete bipartite graph K3,3. In 2008, Meszaros solved the question by proving that the Petersen ...

متن کامل

Leaves in Representation Diagrams of Bipartite Distance-Regular Graphs

Let denote a bipartite distance-regular graph with diameter D ≥ 3 and valency k ≥ 3. Let θ0 > θ1 > · · · > θD denote the eigenvalues of and let qh i j (0 ≤ h, i, j ≤ D) denote the Krein parameters of . Pick an integer h (1 ≤ h ≤ D − 1). The representation diagram = h is an undirected graph with vertices 0, 1, . . . , D. For 0 ≤ i, j ≤ D, vertices i, j are adjacent in whenever i = j and qh i j =...

متن کامل

Colouring Random 4-Regular Graphs

We show that a random 4-regular graph asymptotically almost surely (a.a.s.) has chromatic number 3. The proof uses an efficient algorithm which a.a.s. 3colours a random 4-regular graph. The analysis includes use of the differential equation method, and exponential bounds on the tail of random variables associated with branching processes. A substantial part of the analysis applies to random d-r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1999

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(97)00268-x